\(\int \frac {x \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{d+e x} \, dx\) [439]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 207 \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=-\frac {1}{4} \left (\frac {a}{c d}+\frac {3 d}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}+\frac {\left (c d^2-a e^2\right ) \left (3 c d^2+a e^2\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{5/2}} \]

[Out]

1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e/(e*x+d)+1/8*(-a*e^2+c*d^2)*(a*e^2+3*c*d^2)*arctanh(1/2*(2*c*
d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(3/2)/d^(3/2)/e^(5/2)-1/
4*(a/c/d+3*d/e^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {808, 678, 635, 212} \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {\left (c d^2-a e^2\right ) \left (a e^2+3 c d^2\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{5/2}}+\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}-\frac {1}{4} \left (\frac {a}{c d}+\frac {3 d}{e^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \]

[In]

Int[(x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]

[Out]

-1/4*((a/(c*d) + (3*d)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*
x^2)^(3/2)/(2*c*d*e*(d + e*x)) + ((c*d^2 - a*e^2)*(3*c*d^2 + a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqr
t[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(3/2)*d^(3/2)*e^(5/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 808

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}+\frac {1}{4} \left (-\frac {3 d}{e}-\frac {a e}{c d}\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx \\ & = -\frac {1}{4} \left (\frac {a}{c d}+\frac {3 d}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}+\frac {\left (\left (\frac {3 d}{e}+\frac {a e}{c d}\right ) \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e^2} \\ & = -\frac {1}{4} \left (\frac {a}{c d}+\frac {3 d}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}+\frac {\left (\left (\frac {3 d}{e}+\frac {a e}{c d}\right ) \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 e^2} \\ & = -\frac {1}{4} \left (\frac {a}{c d}+\frac {3 d}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}+\frac {\left (c d^2-a e^2\right ) \left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.77 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.87 \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {c} \sqrt {d} \sqrt {e} \left (a e^2+c d (-3 d+2 e x)\right )+\frac {\left (-6 c^2 d^4+4 a c d^2 e^2+2 a^2 e^4\right ) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{4 c^{3/2} d^{3/2} e^{5/2}} \]

[In]

Integrate[(x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(a*e^2 + c*d*(-3*d + 2*e*x)) + ((-6*c^2*d^4 + 4*a*c*d^
2*e^2 + 2*a^2*e^4)*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + e*
x]))])/(Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/(4*c^(3/2)*d^(3/2)*e^(5/2))

Maple [A] (verified)

Time = 0.57 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.41

method result size
default \(\frac {\frac {\left (2 c d e x +e^{2} a +c \,d^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}}{e}-\frac {d \left (\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (e^{2} a -c \,d^{2}\right ) \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}}\right )}{e^{2}}\) \(291\)

[In]

int(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2
)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/
2))-d/e^2*((c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/
e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 418, normalized size of antiderivative = 2.02 \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\left [-\frac {{\left (3 \, c^{2} d^{4} - 2 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (2 \, c^{2} d^{2} e^{2} x - 3 \, c^{2} d^{3} e + a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, c^{2} d^{2} e^{3}}, -\frac {{\left (3 \, c^{2} d^{4} - 2 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (2 \, c^{2} d^{2} e^{2} x - 3 \, c^{2} d^{3} e + a c d e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, c^{2} d^{2} e^{3}}\right ] \]

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/16*((3*c^2*d^4 - 2*a*c*d^2*e^2 - a^2*e^4)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^
2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e +
 a*c*d*e^3)*x) - 4*(2*c^2*d^2*e^2*x - 3*c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c
^2*d^2*e^3), -1/8*((3*c^2*d^4 - 2*a*c*d^2*e^2 - a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d
^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^
3)*x)) - 2*(2*c^2*d^2*e^2*x - 3*c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^2*d^2*e
^3)]

Sympy [F]

\[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {x \sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{d + e x}\, dx \]

[In]

integrate(x*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)

[Out]

Integral(x*sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.79 \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {1}{4} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (\frac {2 \, x}{e} - \frac {3 \, c d^{2} - a e^{2}}{c d e^{2}}\right )} - \frac {{\left (3 \, c^{2} d^{4} - 2 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{8 \, \sqrt {c d e} c d e^{2}} \]

[In]

integrate(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

1/4*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*x/e - (3*c*d^2 - a*e^2)/(c*d*e^2)) - 1/8*(3*c^2*d^4 - 2*a*c
*d^2*e^2 - a^2*e^4)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x
 + a*d*e))))/(sqrt(c*d*e)*c*d*e^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {x\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{d+e\,x} \,d x \]

[In]

int((x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x),x)

[Out]

int((x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x), x)